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Exam — Predictive Analytics

Introduction

Air pollution is one of the most serious problems around the world, taking into account its
various impacts on human health and ecosystems and climate systems. In particular, in urban
areas, harmful air pollutants like carbon monoxide (CO) and nitrogen dioxide (NO2) are
generated from industrial processes, vehicle emissions, and energy production. Known
associations between these pollutants and a wide range of respiratory and cardiovascular
diseases enforce the fundamental requirement for highly accurate air quality assessment and
forecasting. In addition, RH impacts air quality directly through its role in pollution

distribution and chemical transformation.

Air quality trends are usually difficult to understand and predict. Most of the air quality time-
series data show periodicity, sudden changes, and interrelated relations among multiple
factors, which call for advanced analytics methodologies that can model not only the distinct

trend of pollutant level time series but also relationships among multiple variables.

Time series modeling methodologies include appropriately designed ones for these purposes:
the AutoRegressive Integrated Moving Average-ARIMA-and Vector AutoRegressive-VAR-
models. While ARIMA models focus on univariate time series data, the VAR model allows for
a multivariate analysis; thus, the latter is particularly useful in the analysis of relationships

between the pollutants.

This analysis takes full advantage of an extended dataset of hourly CO, NO2, and RH
measured over quite some time. These variables have been chosen not only for their
individual merits but also for the added benefit derived from the understanding of their
relationships. It's a very good basis for doing trend analysis, seasonality, and understanding
the ability to forecast. Therefore, the selected methodology for the current study will mainly
focus on the predictive performance of the ARIMA and VAR models. In doing so, this study
also attempts to point out the underlying advantages and disadvantages of each in relation to
proper air quality indices representation. The secondary statistical tools to be used will
include an Augmented Dickey-Fuller (ADF) test and Granger causality test in examining

stationarity and the relationship between the variables.
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An extra exercise considers the effectiveness of using different ARIMA specifications for

each series individually, rather than the multivariate VAR approach.

The results of this study have great implications for urban planning and policy formulation.
For instance, strong predictive models should be able to inform anticipatory measures or
strategies that may help mitigate air pollution and thus improve the state of public health.
What is obtained from this paper goes beyond mere academic relevance to contributing
toward a better development of useful tools for air quality management. This report is
organized as follows: Task 1 delivers an exploratory analysis of the data, including
visualization and basic statistical metrics. Task 2 focuses on the investigation of statistical
dependencies together with the Granger causality test. In Task 3, the performance comparison
of the univariate versus multivariate forecasting models is performed. Task 4 evaluates the
accuracy of those models, while in another task, it considers the application of specific
ARIMA models for each variable.

This will help in presenting a comparative study in terms of air quality dynamics and

techniques of forecasting through a structured approach.

Tools and Methods

This research implemented different Python libraries with structured approaches for efficient
preprocessing, analysis, and modeling of the air quality dataset. This has been in extensive use
within data manipulation, integrating the Date and Time columns as a single datetime index,
so offering a logical temporal framework. Within the continuity of time series data, missing
values, represented as -200, have been replaced by using the forward-filling and interpolation

techniques. Preprocessing cleaned up the dataset, making it ready to be worked with.

Exploratory Data analysis (EDA) was helpful to understand the dataset. Basic visualizations
using Matplotlib and Seaborn were used to show the characteristics, trends, and relationships
among the variables. Line plots of time series were observed for each variable individually,

and then it shows a temporal pattern. Then, a correlation matrix was visualized using heat-
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mapping to look at dependency among the variables. These were useful to obtain a basic

understanding of the underlying dataset and helped in subsequent modeling decisions.

In order to be ready for the predictive modeling part, the stationarity of each time series was
evaluated utilizing the Augmented Dickey-Fuller (ADF) available in Statsmodels. Time series
identified as non-stationary were subjected to differencing and subsequently re-evaluated until
stationarity was accomplished, thereby fulfilling a fundamental prerequisite for time series
models. Furthermore, Granger Causality Tests were employed to identify causal connections
among variables, thereby rationalizing the choice of a multivariate model, such as the Vector

Autoregressive (VAR) model, for forecasting purposes.

There are mainly two ways to perform predictive modeling here: VAR and ARIMA. First, the
VAR model from Statsmodels was applied to the previously differenced multivariate data set,
and the best order of lags was determined according to the AIC and BIC metrics. Meanwhile,
for every variable separately, Auto ARIMA from the Pmdarima library was used to model it.
These two models then made predictions over the validation set. Their accuracy was
measured using MAE and RMSE. The models were also plotted with the real observations to

check their prediction capability.

Final model performance evaluation was systematically done through analysis of different
metrics for each variable: for example, visual checks were made via residual plots that
indicate biases or failures in the models. This method allowed deep understanding of the
dataset, including the predictive power of the applied techniques; hence, substantial findings

were made in trends and forecasting of air quality.

Task 1 — Understanding the Data

The dataset used in this analysis contains hourly averaged air quality measurements collected
from a chemical multi-sensor device deployed in a polluted area of an Italian city. Data were
recorded in an Italian city polluted area during a period from March 2004 to February 2005,
consisting of 9358 observations altogether. Each response is themed into three classes of

interest regarding CO, NO2, and RH.
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The time series structure of the data necessitated combining the Date and Time columns into a

single Datetime column, which was then set as the index. The result was correct chronological

order of data that would be suitable for any form of time series analysis and visualization.

Preprocessing steps included dealing with missing values initially encoded as -200 that

needed to be replaced by appropriate interpolated values to maintain continuity in the data.

Time Series Visualization

Each variable was individually plotted to inspect their temporal behavior:

Value
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e (O (GT): This is a time series with a structure of clear fluctuations; peaks reflect

episodes of higher carbon monoxide concentrations that might be related to a certain

time of day or specific environmental conditions. Obvious seasonal and trend

components are seen to vary with time.

Air Quality - NO2 (GT)
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e NO2 (GT): Similar to CO, the NO2 series is variable with peaks in the timeline. It also

seems to have a periodic pattern; this might suggest that it is influenced by some

external factors, such as traffic or industrial activities, in cycles.
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Air Quality - Relative Humidity (RH)

Sy | — Relative Humidity
80 1
70

60 4

Value

204

10 4

T T T T T T T
2004-03 2004-05 2004-07 2004-09 2004-11 2005-01 2005-03
DateTime

e RH: The time series of Relative Humidity does not reveal any apparent relation to the

pollutant concentrations. Its variations are seemingly more irregular and more likely to

be linked directly with meteorological factors rather than sources of pollution.

Correlation Analysis

To explore the relationships between the three variables, a correlation matrix was made, and

the results were visualized using a heatmap.

Correlation Matrix for Air Quality Parameters

NO2(GT) Co(GT)

RH

-0.075

CO(GT) NO2(GT) RH
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Observations from the Correlation Matrix:

CO and NO2: The strongest correlation (0.67) indicating that they two are connected, which

could be from vehicle emissions or industrial activities.

RH and CO: An positive correlation (0.065), suggesting relative connection between humidity

and carbon monoxide levels.

RH and NO2: A weak negative correlation (-0.075), further confirming that NO2 variations

are largely independent of relative humidity.

These results highlight the strong interdependence of CO and NO2, with RH being more
independent of the gaseous pollutants. The would suggest that predictive modeling efforts for
CO and NO2 must consider their interconnected variability, while RH may require separate

modeling considerations.

Task 2

Multivariate vs. Univariate Modeling

The Air Quality data set includes three main variables: CO(GT), NO2(GT), and RH, either
represented separately as a univariate time series or combined as multivariate. As far as the
choice of the best modeling approach is concerned, dependencies of variables were

investigated using Granger Causality Tests and supported by the Correlation Analysis.
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Granger Causality Summary:
Predictor Target Avg P-Value
NO2(GT) RH 7.705202e-32
CO(GT) RH 5.930961e-17

CO(GT) NO2(GT) 3.075724e-13
NO2(GT) CO(GT) 1.419317e-09
RH NO2(GT) 5.721993e-03

RH CO(GT) 5.165939e-02

The Granger Causality Test revealed a relationships between CO and NO2, suggesting these
two variables influence each other over time. This finding supports the use of a multivariate
approach, such as a Vector Autoregressive (VAR) model, which has again supported the
appropriateness of adopting a multivariate approach like the VAR model to capture
interdependencies among variables. . On the other hand, RH presented very weak links and
did not have any major causing effect on either CO or NO2. RH can be represented separately

if needed.

e CO (GT) and NO2 (GT) have strong causal interactions, with an average p-value of
3.076 for CO causing NO2, and 1.419 for NO2 causing CO. This causal relationship
implies that both variables have an impact on one another over time, which supports

the use of a Vector Autoregressive (VAR) model in multivariate modeling.

e RH showed a weaker causal influence on CO (p-value = 5.166) and NO2 (p-value =
5.722), and vice versa. While the causality is statistically significant, the weak
association suggests RH may not be valuable in understanding or predicting CO and

NO2 concentrations.

Stationarity Testing
Stationarity is one of the basic assumptions in most models of a time series. The ADF tests
were conducted on each variable to check for stationarity, and the findings proved that these

three series were nonstationary with trend and seasonal components.
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Checking Stationarity of Individual Series:

Checking Stationarity for CO(GT):
ADF Test for CO(GT): p-value = 3.4840350159889066e-17

Checking Stationarity for NO2(GT):
ADF Test for NO2(GT): p-value = 2.0875509330573812e-10

Checking Stationarity for RH:
ADF Test for RH: p-value = 7.639366923392958e-11

CO (GT):
e ADF p-value = 3.4840
e Since the p-value is much less than 0.05, we reject the null hypothesis of the ADF test,
which means the series is stationary.
NO2 (GT):
e ADF p-value = 2.0875
e Again, the p-value is less than 0.05, so we reject the null hypothesis. The series is
stationary.
RH:
e ADF p-value = 7.6393

o With a p-value less than 0.05, the series is stationary.

Task 3 — Analysis, modeling and prediction

VAR Model Development and Order Selection
a Vector Autoregressive model has been developed to model the interdependencies between
the three variables: CO (GT), NO2 (GT), and RH. First, the optimal lag order of the model

was selected based on the statistical criteria, which include Akaike Information Criterion and
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Bayesian Information Criterion. According to the VAR order selection, the optimal lag order

is 15 because it minimized AIC, BIC, and other criteria.
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The results highlight lag 15 as the optimal choice, as indicated by the minimum AIC value.

Fitting the VAR Model
The VAR model was fitted to the training dataset using the selected lag order of 15. The
results for the three equations (CO, NO2, and RH) insights that would be important to find

more about the relationships between the variables:

CO (GT) Equation:

1. Lagged CO(GT) Values: In this series, autoregressive features are very prominent with
large coefficients contributing from higher-order lags; that will indicate that the past
values of CO(GT) are very important while deciding their future values.

2. The presence of different lags of NO2(GT) which impacts CO(GT) denotes that there
is causality between the variables. For instance:

o The coefficients for Lag 1 and Lag 2 of NO2(GT) are positive, indicating that a
prior increase in NO2(GT) will be followed by an increased value of CO(GT).

3. Impact of Relative Humidity: The impact of the relative humidity on carbon monoxide
GT varies, and few of the lags significantly contribute. Among those, lag 3 has a small

positive influence.
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NO2 (GT) Equation:

1. Lagged NO2 dependence: The equation hence underlines a marked autoregressive
pattern; hence, the value of NO2 is to be forecasted based on its one-step lagged
values.

2. CO-GT: Lagged values of CO-GT greatly contribute to NO2 GT, with wide
coefficients at specific lags. The interaction between CO and NO?2 is also underlined
over time.

3. The impact of relative humidity, on the other hand, is much weaker and noisier than

those of NO2 and CO, although some lags of the former are statistically significant.

RH Equation:

1. Autoregressive Dependence: RH mainly depends on its past values since it portrays
major coefficients for a wide range of lags. This result addresses the relative
independence of RH in the VAR set against fluctuations in CO and NO2.

2. Influence of CO(GT) and NO2(GT): At the same time, many lags of CO(GT) and
NO2(GT) are weaker, yet they also drive RH. These relationships indeed seem to be
sparser and less predictable compared to the history of RH itself.

These results align with the findings from the Granger Causality Tests, which suggested

strong interdependence between CO and NO2 and weaker influence from RH.

Forecasting and Evaluation
The model is used to forecast the next 24 periods in the test sets. Forecasts of CO (GT), NO2
(GT), and RH versus real measured values were plotted. The performance measures MAE and

RMSE were calculated in order to check the performance regarding predictions.
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CO(GT); Actual vs Forecasted

NO2IGT): Actual vs Forecasted

Forecast Visualization

Observed and projected values for each variable were then plotted to show how well the
model was able to capture the general trend and pattern of the data. Forecasts of both CO
(GT) and NO2 (GT) followed measured values fairly well but with significant scatter on the
more extreme values. The RH forecasts were in slightly higher disagreement, most likely

because of its weaker relations with the other variables.

Residual Analysis

Residual analysis was done to check model assumptions and its performance. Residual plots
of each variable were random noises around zero without large systematic biases. The residual
correlation matrix was very low for the residuals of CO, NO2, and RH, which depicts that the
relationship amongst themselves is pretty well captured by the VAR model itself.
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Residual Analysis: CO(GT)
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Insights and Implications

Besides, the model VAR captured the proper dynamic interaction between CO and NO?2,
which is jointly of endogenous relationship representation in the process. Though the
influence of RH was less strong with the other two series, yet it was adequately modeled out

to make the overall analysis robust.

Some difficulties of the model to predict extreme values were seen, especially in RH and

could support further development by including variables, such as temperature or wind speed.
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As expected in any time series forecasting, the accuracy of forecasts decreased slightly for

longer time horizons.

This was a powerful VAR model considering it used just lagged values and relations among
variables to provide quite an accurate short-run forecast, especially for the level of CO and
NO?2 in this highly air-quality-dependent dataset. The effort underlines the importance of
multivariate time series modeling in the perspective of environmental data for great insight

into air quality monitoring and management.

Bonus Task - Analysis, modeling and prediction

This task was selected to explore whether simpler, variable-specific models could provide
better predictions compared to the multivariate VAR model. The ARIMA models are also one
of the most widely used in time-series forecasting because of their flexibility and accuracy in
modeling a pattern in one variable. Unlike the VAR, focusing on an interaction of variables,
ARIMA describes the dynamics of one series. This therefore provides a good avenue to focus

the analysis on trend, seasonality, and noise.

The bonus task focused on applying ARIMA (AutoRegressive Integrated Moving Average)
models individually to the time series data for CO(GT), NO2(GT), and RH. In contrast to the
VAR model, which examines relationships among more than one variable, ARIMA is a kind
of univariate modeling. This exercise aimed at verifying whether ARIMA could outperform
the results obtained with the application of the VAR model in the individual forecast of the

analyzed variables.

Model Summary and Parameters

1. CO (GT): ARIMA(3,1,1)

o AR (p):3
o Differencing (d): 1
o MA(q):1

o AIC:16066.454
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Significant parameters included the first three autoregressive terms and a
single moving average term. The Ljung-Box test confirmed the residuals were

white noise, indicating a good model fit.

2. NO2 (GT): ARIMA(2,1,2)

o

o

o

o

o

AR (p): 2

Differencing (d): 1

MA (q): 2

AIC: 61388.199

Both AR and MA terms were significant, and the Jarque-Bera test suggested

non-normality in the residuals, likely due to extreme values or outliers.

3. RH: ARIMA4,1,2)

o

o

o

AR (p): 4

Differencing (d): 1

MA (q): 2

AIC: 39764.355

The model captured the seasonality and trends effectively, but the high kurtosis

indicated potential overfitting or the presence of anomalies.

Forecast Results and Observations

1. CO (GT):

CO: Actual vs ARIMA Forecast
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General trends were smoother for the ARIMA model forecast than the actual
data, although it does capture these up and down trends, it does not show sharp
peaks or fluctuations.

This mismatch may arise from ARIMA’s limitations in handling sudden

variability in time series data.

2. NO2 (GT):

T
04-04 15
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NO2: Actual vs ARIMA Forecast
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o The forecast for NO2 showed a consistent downward drift, deviating
significantly from the actual observed peaks and troughs. This would indicate

that the ARIMA model struggled to accurately represent the volatile behavior

of NO2 over time.

3. RH:
RH: Actual vs ARIMA Forecast
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o hese indeed captured very regular seasonal trends in the RH forecasts, whereas
ones from the data were highly spiky.
o This could also suggest that the ARIMA model may not have fully captured the

influence of external factors, such as weather conditions.

Strengths and Limitations of ARIMA Models
1. Strengths:
o The ARIMA models provided reliable overall trends, especially for CO (GT)
and RH.
o Parameter selection via auto _arima was efficient, identifying the best
configurations to minimize the AIC and ensure statistical adequacy.
2. Limitations:
o The univariate nature of ARIMA ignores relationships between variables like
for example, CO and NO2, limiting its ability to capture interdependencies.
o Forecasts smoothed out extreme fluctuations, resulting in inaccuracies for

volatile variables like NO2.
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While the ARIMA models captured the general trend with understandable results, some
shortcomings remained concerning intrinsic volatility in the dataset and the interactive nature
among the variables. Further analysis of a multivariate approach will go higher precisions in

the forecast and better reflect real-life relationships.

Task 4 — Results and Evaluation

This section provides an analysis of the performance of two different forecast methods,
namely Vector Autoregression (VAR) and ARIMA-AutoRegressive Integrated Moving
Average, in their ability to yield efficient forecasts for key air quality indicators such as CO
(GT), NO2 (GT), and RH. These models were followed up with the assessment of their
performances with the MAE and RMSE.

Comparison of VAR and ARIMA Accuracy Metrics:
Variable VAR_MAE VAR _RMSE ARIMA_MAE ARIMA_RMSE
@ CO(GT) 0.498387 0.796891 1.621075 1.714905

1 NO2(GT) 16.361190 21.097116 120.599385 123.109266
2 RH 3.751738 4.621751 35.663414 37.754474

Analysis of Results
1. CO (GT):
o The VAR model outperforms ARIMA significantly, with much lower MAE
(0.4984 vs. 1.6211) and RMSE (0.79 vs. 1.71). This suggests that VAR had
more ability to catch the short-run dynamics and relationships of variables
influencing the levels of CO.
2. NO2 (GT):
o While similar to CO, the VAR model proved to be more accurate, with much
lower MAE and RMSE than ARIMA: 16.36 versus 120.59 and 21.0971 versus
123.1093, respectively.
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3.

o Large discrepancies in the forecasts of ARIMA could be a reason for not
considering the strong cause-effect relationships of NO2 with other main
factors like CO and RH.

RH (Relative Humidity):

o The VAR outperformed the ARIMA model at an MAE of 3.7517 and RMSE of
4.6218, against the ARIMA MAE of 35.6634 and RMSE of 37.7545.

o ARIMA's weaker performance for RH highlights its limited capacity to handle

the volatility and inter-variable influences present in the dataset.

Graph Analysis: VAR vs. ARIMA Predictions

The graphs display the actual values (blue line), VAR predictions (orange dashed line), and
ARIMA predictions (green dashed line):
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3.0 A

2.5 1

2.0 1

1.5

1.0 4

0.5 4

0.0 1

—1.0

CO(GT): Actual vs VAR vs ARIMA

— Actual CO(GT)
VAR CO(GT)
== ARIMA CO(GT)

T T T T T T T T T
04-03 15 04-03 18 04-03 21 04-04 00 04-04 03 04-04 06 04-04 09 04-04 12 04-04 15
Time

CO(GT): While VAR predictions capture the variations better, the actual
valuesfollow them quite closely. Contrasting with that, ARIMA looks static and
unable to adapt to the variations. That reflects the limitation of ARIMA when

modeling variables influenced by dynamic interrelationships.
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RH: Actual vs VAR vs ARIMA
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2. NO2(GT): The model, though showing minor deviations, sets the trend
of NO2 quitewell in the VAR model. ARIMA predictions

remain constant and do notshow the sudden change seen in the actual NO2 levels.

RH: Actual vs VAR vs ARIMA
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3. RH: In terms of relative humidity,

VAR gives better results for the real values, while ARIMA responds poorly to changes

, sticking with a very basic form offorecasting.

Visual Comparison of Forecasts
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The next forecast observations also support the fact that the VAR model strength will be
enhanced:
e The VAR forecasts closely align with the observed values, capturing both trends and
fluctuations in the data.
¢ In the other hand, ARIMA yielded an ultra-smoothed forecast which failed to capture

many pronounced peaks in the actual data.

Interdependencies Matter:
e The relationships between the variables, such as strong causality present between CO

and NO2, are exploited by the VAR model to give better forecasting.

e In contrast, ARIMA failed to capture these interdependencies and, through its

univariate nature, had higher errors.

Short-Term vs. Long-Term Accuracy:

e VAR showed a better short-run accuracy, especially on volatile variables like NO2.

o ARIMA forecast showed smooth results, which may be helpful in analyzing the long-
term trend yet not that good for the short-term.

Model Suitability:
e When the analysis deals with many interrelated time series variables, as many analyses
of air quality do, VAR would be more appropriate since it models cross-variable
interactions. Nevertheless, ARIMA could be useful in independent and univariate

considerations and lacks robustness at that level to represent multivariate settings.

The comparative analysis showed that the VAR model performed consistently better in
making forecasts of all three air quality parameters than ARIMA. VAR accounted for the
inter-variable dynamics in all cases with much-reduced MAE and RMSE. The findings
underpin that, in the cases in which variables may be interrelated, one should make
consideration of multivariate approaches to forecasts by time series. Future refinements in the

parameters of VAR or hybrid modelling may further help improve the accuracy in forecasts.
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Conclusion

This study focuses on the application of time series analysis and forecasting techniques to air
quality data, based on three key variables: carbon monoxide (CO) (GT), nitrogen dioxide
(NO2) (GT), and relative humidity (RH). This encompasses strict data pre-processing,
stationarity checking, causal analysis, and model implementation-both univariate (ARIMA)
and multivariate (VAR). Each one of these activities contributed to a deep exploration of the

dataset and identification of the best modeling approach.

The initial exploration highlighted the interdependencies among the variables, with CO and
NO2 showing strong bi-directional causal relationships, whereas RH had a relatively weak
causal link. The stationarity tests indicated that all the variables needed differencing to make
them stationary, a prerequisite for any time series modeling. This helped in getting proper

model development and forecasting.

Although ARIMA models perform well in detecting overall trends, the model faced some
limitations in volatility response and intervariable relationships. As a result, the ARIMA
predictions had a very smooth trend that led to increased error, in particular for NO2 and RH.
Conversely, the VAR model made better utilization of the relationship among those variables
to realize far more accurate forecasts of the concerned factors, as reflected by the small MAE

and RMSE of all variables from the VAR model.

The comparison undertaken between VAR and ARIMA gave reason for the adoption of
multivariate approaches when time series are interlinked within a dataset. The strength of
VAR, capable of modeling cross-variable influences, outperformed ARIMA in both short-run
accuracy and responsiveness to variation. In fact, the same was evidenced by the visualization

of the forecast, where VAR predictions were closer to the observed values.

This analysis, therefore, concluded that multivariate approaches were superior, such as using
VAR to make such interlinked dataset forecasts. But ARIMA is good to go for univariate time
series but not in cases involving multiple interrelated variables. There are studies that will be

covered by integrating hybrid models, which combine the strengths of ARIMA and VAR, or
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using machine learning techniques for further improvement in predictive performance to gain

more depth understanding of the dynamics of air quality.
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Air pollution: Everything you need to know. (2024, March

26). https://www.nrdc.org/stories/air-pollution-everything-you-need-know#effects

Katy. (2024, November 25). Performing “Granger Causality” with Python: Detailed
Examples. Medium. https://medium.com/codex/performing-granger-causality-with-python-

detailed-examples-3bca3fbleld2

Source code:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from statsmodels.tsa.stattools import grangercausalitytests, adfuller, kpss
from statsmodels.tsa.api import VAR

from sklearn.metrics import mean_absolute error, mean squared_error

from pmdarima import auto_arima

df = pd.read csv('/Users/hodanielkhuu/Library/CloudStorage/OneDrive-
HoyskolenKristiania/School/3 ar/PGR304 Predictive
Analytics/Exam/DataSet 4 Exam/AirQualityUCl.csv', sep=";', decimal='",")

# Combine Date and Time columns

dff'Datetime'] = df['Date'] + ' ' + df['Time']

# Explicitly specify the format of the datetime
df['Datetime'] = pd.to_datetime(df]'Datetime'], format='%d/%m/%Y %H.%M.%S")


https://www.nrdc.org/stories/air-pollution-everything-you-need-know#effects
https://medium.com/codex/performing-granger-causality-with-python-detailed-examples-3bca3fb1e1d2
https://medium.com/codex/performing-granger-causality-with-python-detailed-examples-3bca3fb1e1d2
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# Set as index

df.set_index('Datetime’, inplace=True)

# Verify the changes
print(df.index)
print(df.head())

plt.style.use('default')

# Plot for CO (GT)

plt.figure(figsize=(12, 4))

plt.plot(data.index, data['CO(GT)'], label='CO (GT)', color="b")
plt.legend()

plt.title("Air Quality - CO (GT)")

plt.xlabel('DateTime")

plt.ylabel('Value')

plt.grid(True)

plt.show()

# Plot for NO2 (GT)

plt.figure(figsize=(12, 4))

plt.plot(data.index, data['NO2(GT)'], label='NO2 (GT)', color="r")
plt.legend()

plt.title('Air Quality - NO2 (GT)")

plt.xlabel('DateTime")

plt.ylabel('Value')

plt.grid(True)

plt.show()

# Plot for Relative Humidity (RH)

plt.figure(figsize=(12, 4))

plt.plot(data.index, data['RH'], label="Relative Humidity', color="g")
plt.legend()
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plt.title('Air Quality - Relative Humidity (RH)")
plt.xlabel('DateTime")

plt.ylabel('Value')

plt.grid(True)

plt.show()

data = df[['CO(GT)', ' NO2(GT)', 'RH']]

# Handle Missing Values

print(f"Missing Values Before Cleaning:\n{data.isna().sum()}\n")

data.replace(-200, np.nan, inplace=True)

data.dropna(inplace=True)

print(f'Missing Values After Cleaning:\n{data.isna().sum()}\n")
data.dropna(inplace=True)

data.interpolate(method='"time', inplace=True) # Interpolate missing values to preserve

continuity

print("\nDataset Information:")
data.info()

print("\nFirst 5 Rows of Data:")
print(data.head())

# Statistical Summary
print("\nStatistical Summary of Dataset:")
print(data.describe())

correlations = data.corr()

print(correlations)

# Heatmap
plt.figure(figsize=(10, 6))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm', linewidths=0.5)

plt.title('Correlation Matrix for Air Quality Parameters')
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plt.show()

# ADF - Stationarity Tests

def check_stationarity(timeseries, title):
print(f"\nChecking Stationarity for {title}:")
# Augmented Dickey-Fuller test
adf result = adfuller(timeseries)

print(f"ADF Test for {title}: p-value = {adf result[1]}")

# Check stationarity for each time series
print("\nChecking Stationarity of Individual Series:")
check stationarity(data['CO(GT)'], 'CO(GT)")

check stationarity(data[' NO2(GT)'], NO2(GT)")
check stationarity(data['RH'], 'RH")

def granger causality summary(data, max lag=12):
summary = []
for target in data.columns:
for predictor in data.columns:
if target != predictor:
test_result = grangercausalitytests(data[[target, predictor]].dropna(), max_lag,
verbose=False)
p_values = [test_result[lag][0]['ssr_ftest'][1] for lag in range(1, max_lag + 1)]
# Average p-value across lags
avg p_value = np.mean(p_values)
summary.append({
'Predictor': predictor,
'"Target": target,
'Avg P-Value': avg p value

1)
return pd.DataFrame(summary).sort values(by='Avg P-Value')
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# Generate and Display Granger Causality Summary
gc_summary = granger causality summary(data, max lag=12)
print("\nGranger Causality Summary:")

print(gc_summary)

train = data[:-24]
test = data[-24:]

# Ensure there are no NaN or infinite values in the training data
train = train[["CO(GT)", "NO2(GT)", "RH"]].dropna()
test = test[["CO(GT)", "NO2(GT)", "RH"]].dropna()

print("\nTrain Set Size:", train.shape)

print("Test Set Size:", test.shape)

model = VAR(train)
order_selection = model.select order(maxlags=15)
print("\nSelected Order of VAR Model:")

print(order selection.summary())

# Fit Model Using Selected Order
var_model = model.fit(order selection.aic)
print("\nSummary of Fitted VAR Model:")

print(var_model.summary())

var_forecast = var model.forecast(train.values[-var model.k ar:], steps=24)

var_forecast df = pd.DataFrame(var_forecast, columns=train.columns, index=test.index)

# Define Evaluation Function

def evaluate forecast(true values, forecast values, label):
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mae = mean_absolute error(true values, forecast values)
rmse = np.sqrt(mean_squared error(true values, forecast values))

print(f'{label} - MAE: {mae:.2f}, RMSE: {rmse:.2f}")

# Evaluate forecasts for each variable

evaluate forecast(test['CO(GT)'], var_forecast df['CO(GT)'], 'CO(GT)")
evaluate forecast(test{'NO2(GT)'], var_forecast df'NO2(GT)'], NO2(GT)")
evaluate forecast(test['/RH'], var forecast df['RH'], 'RH")

# Plotting Actual vs Forecast
plt.figure(figsize=(15, 18))

# CO(GT)

plt.subplot(3, 1, 1)

plt.plot(test.index, test['CO(GT)'], label='Actual CO(GT)', color="blue', marker='0")
plt.plot(var_forecast df.index, var forecast df['CO(GT)'], label="Forecasted CO(GT)',
linestyle='--', color="red', marker="x")

plt.legend()

plt.title('CO(GT): Actual vs Forecasted')

plt.xlabel('Datetime")

plt.ylabel('Values')

plt.grid()

# NO2(GT)

plt.subplot(3, 1, 2)

plt.plot(test.index, test['NO2(GT)'], label='Actual NO2(GT)', color="blue', marker='0")
plt.plot(var forecast df.index, var forecast df['NO2(GT)'], label='"Forecasted NO2(GT)',

linestyle="--', color="red', marker='x")
plt.legend()

plt.title('NO2(GT): Actual vs Forecasted')
plt.xlabel('Datetime")

plt.ylabel('Values')
plt.grid()
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# RH

plt.subplot(3, 1, 3)

plt.plot(test.index, test['RH'], label='Actual RH', color="blue', marker='0")

plt.plot(var forecast df.index, var forecast df['RH'], label='Forecasted RH', linestyle="--',
color="red', marker='x")

plt.legend()

plt.title('RH: Actual vs Forecasted')

plt.xlabel('Datetime")

plt.ylabel('Values')

plt.grid()

plt.tight layout()
plt.show()

def plot_residuals(actual, predicted, title):
residuals = actual.values - predicted.values
plt.figure(figsize=(15, 6))
plt.plot(actual.index, residuals, label=f'Residuals ({title})', color="purple', marker='0")
plt.axhline(y=0, color="black’, linestyle="--', linewidth=1)
plt.title(fResidual Analysis: {title}")
plt.xlabel('Datetime")
plt.ylabel('Residuals')
plt.legend()
plt.grid()
plt.show()

# Plot residuals for each variable

plot_residuals(test['CO(GT)'][-24:], var_forecast df['CO(GT)'], 'CO(GT)")
plot_residuals(test['NO2(GT)'][-24:], var_forecast df['NO2(GT)'], NO2(GT)")
plot_residuals(test['RH'][-24:], var forecast df['RH'], 'RH")

co_arima = auto_arima(data['CO(GT)'], seasonal=False, trace=True)

no2 arima = auto_arima(data['NO2(GT)'], seasonal=False, trace=True)
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rh_arima = auto_arima(data['RH'], seasonal=False, trace=True)

# Forecast for each model (24 steps)
co_forecast arima = co_arima.predict(n_periods=24)
no2 forecast arima =no2_arima.predict(n_periods=24)

rh_forecast arima =rh_arima.predict(n_periods=24)

# ARIMA forecasts for each variable
arima_forecasts = {
'CO(GT)'": co_forecast_arima,
'NO2(GT)": no2_forecast arima,

'RH': rh_forecast_arima

arima_forecast df = pd.DataFrame(arima_forecasts, index=test.index)

# Print ARIMA Model Summary
print("\nSummary of ARIMA Models:")
print(co_arima.summary())

print(no2 arima.summary())

print(rh_arima.summary())

plt.figure(figsize=(15, 10))

# CO(GT) Plot

plt.subplot(3, 1, 1)

plt.plot(test.index[-24:], test['CO(GT)'][-24:], label="Actual CO', color="blue")
plt.plot(arima_forecast df.index[-24:], co forecast arima, label="ARIMA Forecast CO',
linestyle="--', color='green'")

plt.legend()

plt.title("CO: Actual vs ARIMA Forecast')

plt.xlabel('Datetime")

plt.ylabel('Values')



Candidate: 14

plt.grid()

# NO2(GT) Plot

plt.subplot(2, 1, 2)

plt.plot(test.index[-24:], test['NO2(GT)'][-24:], label="Actual NO2', color="blue")
plt.plot(arima forecast df.index[-24:], no2 forecast arima, label='ARIMA Forecast NO2',

linestyle="--', color='green'")

plt.legend()

plt.title('NO2: Actual vs ARIMA Forecast')
plt.xlabel('Datetime")

plt.ylabel('Values')
plt.grid()

# RH Plot

plt.subplot(4, 1, 2)

plt.plot(test.index[-24:], test['RH'][-24:], label='Actual RH', color="blue")

plt.plot(arima forecast df.index[-24:], rh_forecast arima, label='ARIMA Forecast RH',

linestyle="--', color='green'")

plt.legend()

plt.title('RH: Actual vs ARIMA Forecast')
plt.xlabel('Datetime")

plt.ylabel('Values')
plt.grid()

plt.tight layout()
plt.show()

# Plot for CO(GT)

plt.figure(figsize=(12, 6))

plt.plot(test.index, test["CO(GT)"], label="Actual CO(GT)", color="blue", linewidth=2)
plt.plot(test.index, var forecast df["CO(GT)"], label="VAR CO(GT)", color="orange",
linestyle="--", linewidth=2)

plt.plot(test.index, arima_forecasts["CO(GT)"], label="ARIMA CO(GT)", color="green",
linestyle="dashed", linewidth=2)
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plt.title("CO(GT): Actual vs VAR vs ARIMA")
plt.xlabel("Time")

plt.ylabel("CO(GT)")

plt.legend()

plt.grid()

plt.show()

# Repeat for NO2(GT)

plt.figure(figsize=(12, 6))

plt.plot(test.index, test["NO2(GT)"], label="Actual NO2(GT)", color="blue", linewidth=2)
plt.plot(test.index, var forecast df["NO2(GT)"], label="VAR NO2(GT)", color="orange",
linestyle="--", linewidth=2)

plt.plot(test.index, arima_forecasts["NO2(GT)"], label="ARIMA NO2(GT)", color="green",
linestyle="dashed", linewidth=2)

plt.title("NO2(GT): Actual vs VAR vs ARIMA")

plt.xlabel("Time")

plt.ylabel("NO2(GT)")

plt.legend()

plt.grid()

plt.show()

# Repeat for RH

plt.figure(figsize=(12, 6))

plt.plot(test.index, test["RH"], label="Actual RH", color="blue", linewidth=2)
plt.plot(test.index, var forecast df["RH"], label="VAR RH", color="orange", linestyle="--",
linewidth=2)

plt.plot(test.index, arima_forecasts["RH"], label="ARIMA RH", color="green",
linestyle="dashed", linewidth=2)

plt.title("RH: Actual vs VAR vs ARIMA")

plt.xlabel("Time")

plt.ylabel("Relative Humidity")

plt.legend()

plt.grid()

plt.show()
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metrics = []

for column in test.columns:
# VAR Metrics
var_mae = mean_absolute error(test[column], var forecast df[column])
var_rmse = np.sqrt(mean_squared_error(test[column], var forecast df[column]))

# ARIMA Metrics
arima_mae = mean_absolute error(test[column], arima_forecasts[column])
arima_rmse = np.sqrt(mean_squared_error(test{column], arima_forecasts[column]))

# Append results to metrics list
metrics.append({
"Variable": column,
"VAR MAE": var mae,
"VAR_RMSE": var_rmse,
"ARIMA MAE": arima_mae,
"ARIMA RMSE": arima_rmse

1)

# Convert metrics to DataFrame
metrics_df = pd.DataFrame(metrics)

# Display the results
print("\nComparison of VAR and ARIMA Accuracy Metrics:")
print(metrics_df)



