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Exam – Predictive Analytics 

 

Introduction 

 

Air pollution is one of the most serious problems around the world, taking into account its 

various impacts on human health and ecosystems and climate systems. In particular, in urban 

areas, harmful air pollutants like carbon monoxide (CO) and nitrogen dioxide (NO2) are 

generated from industrial processes, vehicle emissions, and energy production. Known 

associations between these pollutants and a wide range of respiratory and cardiovascular 

diseases enforce the fundamental requirement for highly accurate air quality assessment and 

forecasting. In addition, RH impacts air quality directly through its role in pollution 

distribution and chemical transformation. 

 

Air quality trends are usually difficult to understand and predict. Most of the air quality time-

series data show periodicity, sudden changes, and interrelated relations among multiple 

factors, which call for advanced analytics methodologies that can model not only the distinct 

trend of pollutant level time series but also relationships among multiple variables. 

 

Time series modeling methodologies include appropriately designed ones for these purposes: 

the AutoRegressive Integrated Moving Average-ARIMA-and Vector AutoRegressive-VAR-

models. While ARIMA models focus on univariate time series data, the VAR model allows for 

a multivariate analysis; thus, the latter is particularly useful in the analysis of relationships 

between the pollutants. 

 

This analysis takes full advantage of an extended dataset of hourly CO, NO2, and RH 

measured over quite some time. These variables have been chosen not only for their 

individual merits but also for the added benefit derived from the understanding of their 

relationships. It's a very good basis for doing trend analysis, seasonality, and understanding 

the ability to forecast. Therefore, the selected methodology for the current study will mainly 

focus on the predictive performance of the ARIMA and VAR models. In doing so, this study 

also attempts to point out the underlying advantages and disadvantages of each in relation to 

proper air quality indices representation. The secondary statistical tools to be used will 

include an Augmented Dickey-Fuller (ADF) test and Granger causality test in examining 

stationarity and the relationship between the variables. 
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An extra exercise considers the effectiveness of using different ARIMA specifications for 

each series individually, rather than the multivariate VAR approach. 

 

The results of this study have great implications for urban planning and policy formulation. 

For instance, strong predictive models should be able to inform anticipatory measures or 

strategies that may help mitigate air pollution and thus improve the state of public health. 

What is obtained from this paper goes beyond mere academic relevance to contributing 

toward a better development of useful tools for air quality management. This report is 

organized as follows: Task 1 delivers an exploratory analysis of the data, including 

visualization and basic statistical metrics. Task 2 focuses on the investigation of statistical 

dependencies together with the Granger causality test. In Task 3, the performance comparison 

of the univariate versus multivariate forecasting models is performed. Task 4 evaluates the 

accuracy of those models, while in another task, it considers the application of specific 

ARIMA models for each variable. 

This will help in presenting a comparative study in terms of air quality dynamics and 

techniques of forecasting through a structured approach. 

 

 

 

 

Tools and Methods  

This research implemented different Python libraries with structured approaches for efficient 

preprocessing, analysis, and modeling of the air quality dataset. This has been in extensive use 

within data manipulation, integrating the Date and Time columns as a single datetime index, 

so offering a logical temporal framework. Within the continuity of time series data, missing 

values, represented as -200, have been replaced by using the forward-filling and interpolation 

techniques. Preprocessing cleaned up the dataset, making it ready to be worked with. 

 

Exploratory Data analysis (EDA)  was helpful to understand the dataset. Basic visualizations 

using Matplotlib and Seaborn were used to show the characteristics, trends, and relationships 

among the variables. Line plots of time series were observed for each variable individually, 

and then it shows a temporal pattern. Then, a correlation matrix was visualized using heat-
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mapping to look at dependency among the variables. These were useful to obtain a basic 

understanding of the underlying dataset and helped in subsequent modeling decisions. 

 

In order to be ready for the predictive modeling part, the stationarity of each time series was 

evaluated utilizing the Augmented Dickey-Fuller (ADF) available in Statsmodels. Time series 

identified as non-stationary were subjected to differencing and subsequently re-evaluated until 

stationarity was accomplished, thereby fulfilling a fundamental prerequisite for time series 

models. Furthermore, Granger Causality Tests were employed to identify causal connections 

among variables, thereby rationalizing the choice of a multivariate model, such as the Vector 

Autoregressive (VAR) model, for forecasting purposes. 

 

There are mainly two ways to perform predictive modeling here: VAR and ARIMA. First, the 

VAR model from Statsmodels was applied to the previously differenced multivariate data set, 

and the best order of lags was determined according to the AIC and BIC metrics. Meanwhile, 

for every variable separately, Auto ARIMA from the Pmdarima library was used to model it. 

These two models then made predictions over the validation set. Their accuracy was 

measured using MAE and RMSE. The models were also plotted with the real observations to 

check their prediction capability. 

 

Final model performance evaluation was systematically done through analysis of different 

metrics for each variable: for example, visual checks were made via residual plots that 

indicate biases or failures in the models. This method allowed deep understanding of the 

dataset, including the predictive power of the applied techniques; hence, substantial findings 

were made in trends and forecasting of air quality. 

 

 

Task 1 – Understanding the Data 

The dataset used in this analysis contains hourly averaged air quality measurements collected 

from a chemical multi-sensor device deployed in a polluted area of an Italian city. Data were 

recorded in an Italian city polluted area during a period from March 2004 to February 2005, 

consisting of 9358 observations altogether. Each response is themed into three classes of 

interest regarding CO, NO2, and RH.  
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The time series structure of the data necessitated combining the Date and Time columns into a 

single Datetime column, which was then set as the index. The result was correct chronological 

order of data that would be suitable for any form of time series analysis and visualization. 

Preprocessing steps included dealing with missing values initially encoded as -200 that 

needed to be replaced by appropriate interpolated values to maintain continuity in the data. 

 

Time Series Visualization 

 

Each variable was individually plotted to inspect their temporal behavior: 

 

• CO (GT): This is a time series with a structure of clear fluctuations; peaks reflect 

episodes of higher carbon monoxide concentrations that might be related to a certain 

time of day or specific environmental conditions. Obvious seasonal and trend 

components are seen to vary with time. 

 

• NO2 (GT): Similar to CO, the NO2 series is variable with peaks in the timeline. It also 

seems to have a periodic pattern; this might suggest that it is influenced by some 

external factors, such as traffic or industrial activities, in cycles. 
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• RH: The time series of Relative Humidity does not reveal any apparent relation to the 

pollutant concentrations. Its variations are seemingly more irregular and more likely to 

be linked directly with meteorological factors rather than sources of pollution. 

 

 

Correlation Analysis 

 

To explore the relationships between the three variables, a correlation matrix was made, and 

the results were visualized using a heatmap.  
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Observations from the Correlation Matrix: 

 

CO and NO2: The strongest correlation (0.67) indicating that they two are connected, which 

could be from vehicle emissions or industrial activities. 

 

RH and CO: An positive correlation (0.065), suggesting relative connection between humidity 

and carbon monoxide levels. 

 

RH and NO2: A weak negative correlation (-0.075), further confirming that NO2 variations 

are largely independent of relative humidity. 

 

These results highlight the strong interdependence of CO and NO2, with RH being more 

independent of the gaseous pollutants. The would suggest that predictive modeling efforts for 

CO and NO2 must consider their interconnected variability, while RH may require separate 

modeling considerations. 

 

 

 

 

 

 

Task 2 

Multivariate vs. Univariate Modeling 

 

The Air Quality data set includes three main variables: CO(GT), NO2(GT), and RH, either 

represented separately as a univariate time series or combined as multivariate. As far as the 

choice of the best modeling approach is concerned, dependencies of variables were 

investigated using Granger Causality Tests and supported by the Correlation Analysis. 
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The Granger Causality Test revealed a relationships between CO and NO2, suggesting these 

two variables influence each other over time. This finding supports the use of a multivariate 

approach, such as a Vector Autoregressive (VAR) model, which has again supported the 

appropriateness of adopting a multivariate approach like the VAR model to capture 

interdependencies among variables. . On the other hand, RH presented very weak links and 

did not have any major causing effect on either CO or NO2. RH can be represented separately 

if needed. 

 

• CO (GT) and NO2 (GT) have strong causal interactions, with an average p-value of 

3.076 for CO causing NO2, and 1.419 for NO2 causing CO. This causal relationship 

implies that both variables have an impact on one another over time, which supports 

the use of a Vector Autoregressive (VAR) model in multivariate modeling. 

 

• RH showed a weaker causal influence on CO (p-value = 5.166) and NO2 (p-value = 

5.722), and vice versa. While the causality is statistically significant, the weak 

association suggests RH may not be valuable in understanding or predicting CO and 

NO2 concentrations. 

 

Stationarity Testing 

Stationarity is one of the basic assumptions in most models of a time series. The ADF tests 

were conducted on each variable to check for stationarity, and the findings proved that these 

three series were nonstationary with trend and seasonal components. 
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CO (GT): 

• ADF p-value = 3.4840 

• Since the p-value is much less than 0.05, we reject the null hypothesis of the ADF test, 

which means the series is stationary. 

 NO2 (GT): 

• ADF p-value = 2.0875 

• Again, the p-value is less than 0.05, so we reject the null hypothesis. The series is 

stationary. 

RH: 

• ADF p-value = 7.6393 

• With a p-value less than 0.05, the series is stationary. 

 

 

 

 

 

 

Task 3 – Analysis, modeling and prediction 

 

VAR Model Development and Order Selection 

a Vector Autoregressive model has been developed to model the interdependencies between 

the three variables: CO (GT), NO2 (GT), and RH. First, the optimal lag order of the model 

was selected based on the statistical criteria, which include Akaike Information Criterion and 
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Bayesian Information Criterion. According to the VAR order selection, the optimal lag order 

is 15 because it minimized AIC, BIC, and other criteria. 

 

 

 

The results highlight lag 15 as the optimal choice, as indicated by the minimum AIC value. 

 

Fitting the VAR Model 

The VAR model was fitted to the training dataset using the selected lag order of 15. The 

results for the three equations (CO, NO2, and RH) insights that would be important to find 

more about the relationships between the variables: 

 

CO (GT) Equation: 

1. Lagged CO(GT) Values: In this series, autoregressive features are very prominent with 

large coefficients contributing from higher-order lags; that will indicate that the past 

values of CO(GT) are very important while deciding their future values. 

2. The presence of different lags of NO2(GT) which impacts CO(GT) denotes that there 

is causality between the variables. For instance: 

o The coefficients for Lag 1 and Lag 2 of NO2(GT) are positive, indicating that a 

prior increase in NO2(GT) will be followed by an increased value of CO(GT). 

3. Impact of Relative Humidity: The impact of the relative humidity on carbon monoxide 

GT varies, and few of the lags significantly contribute. Among those, lag 3 has a small 

positive influence. 
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NO2 (GT) Equation: 

1. Lagged NO2 dependence: The equation hence underlines a marked autoregressive 

pattern; hence, the value of NO2 is to be forecasted based on its one-step lagged 

values. 

2. CO-GT: Lagged values of CO-GT greatly contribute to NO2 GT, with wide 

coefficients at specific lags. The interaction between CO and NO2 is also underlined 

over time. 

3. The impact of relative humidity, on the other hand, is much weaker and noisier than 

those of NO2 and CO, although some lags of the former are statistically significant. 

 

 

 

RH Equation: 

1. Autoregressive Dependence: RH mainly depends on its past values since it portrays 

major coefficients for a wide range of lags. This result addresses the relative 

independence of RH in the VAR set against fluctuations in CO and NO2. 

2. Influence of CO(GT) and NO2(GT): At the same time, many lags of CO(GT) and 

NO2(GT) are weaker, yet they also drive RH. These relationships indeed seem to be 

sparser and less predictable compared to the history of RH itself. 

 

These results align with the findings from the Granger Causality Tests, which suggested 

strong interdependence between CO and NO2 and weaker influence from RH. 

 

Forecasting and Evaluation 

The model is used to forecast the next 24 periods in the test sets. Forecasts of CO (GT), NO2 

(GT), and RH versus real measured values were plotted. The performance measures MAE and 

RMSE were calculated in order to check the performance regarding predictions. 
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Forecast Visualization 

Observed and projected values for each variable were then plotted to show how well the 

model was able to capture the general trend and pattern of the data. Forecasts of both CO 

(GT) and NO2 (GT) followed measured values fairly well but with significant scatter on the 

more extreme values. The RH forecasts were in slightly higher disagreement, most likely 

because of its weaker relations with the other variables. 

 

Residual Analysis 

Residual analysis was done to check model assumptions and its performance. Residual plots 

of each variable were random noises around zero without large systematic biases. The residual 

correlation matrix was very low for the residuals of CO, NO2, and RH, which depicts that the 

relationship amongst themselves is pretty well captured by the VAR model itself. 
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Insights and Implications 

Besides, the model VAR captured the proper dynamic interaction between CO and NO2, 

which is jointly of endogenous relationship representation in the process. Though the 

influence of RH was less strong with the other two series, yet it was adequately modeled out 

to make the overall analysis robust. 

 

Some difficulties of the model to predict extreme values were seen, especially in RH and 

could support further development by including variables, such as temperature or wind speed. 
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As expected in any time series forecasting, the accuracy of forecasts decreased slightly for 

longer time horizons. 

 

This was a powerful VAR model considering it used just lagged values and relations among 

variables to provide quite an accurate short-run forecast, especially for the level of CO and 

NO2 in this highly air-quality-dependent dataset. The effort underlines the importance of 

multivariate time series modeling in the perspective of environmental data for great insight 

into air quality monitoring and management. 

 

 

 

 

Bonus Task - Analysis, modeling and prediction 

This task was selected to explore whether simpler, variable-specific models could provide 

better predictions compared to the multivariate VAR model. The ARIMA models are also one 

of the most widely used in time-series forecasting because of their flexibility and accuracy in 

modeling a pattern in one variable. Unlike the VAR, focusing on an interaction of variables, 

ARIMA describes the dynamics of one series. This therefore provides a good avenue to focus 

the analysis on trend, seasonality, and noise. 

 

The bonus task focused on applying ARIMA (AutoRegressive Integrated Moving Average) 

models individually to the time series data for CO(GT), NO2(GT), and RH. In contrast to the 

VAR model, which examines relationships among more than one variable, ARIMA is a kind 

of univariate modeling. This exercise aimed at verifying whether ARIMA could outperform 

the results obtained with the application of the VAR model in the individual forecast of the 

analyzed variables. 

 

Model Summary and Parameters 

1. CO (GT): ARIMA(3,1,1) 

o AR (p): 3 

o Differencing (d): 1 

o MA (q): 1 

o AIC: 16066.454 



Candidate: 14 

o Significant parameters included the first three autoregressive terms and a 

single moving average term. The Ljung-Box test confirmed the residuals were 

white noise, indicating a good model fit. 

2. NO2 (GT): ARIMA(2,1,2) 

o AR (p): 2 

o Differencing (d): 1 

o MA (q): 2 

o AIC: 61388.199 

o Both AR and MA terms were significant, and the Jarque-Bera test suggested 

non-normality in the residuals, likely due to extreme values or outliers. 

3. RH: ARIMA(4,1,2) 

o AR (p): 4 

o Differencing (d): 1 

o MA (q): 2 

o AIC: 39764.355 

o The model captured the seasonality and trends effectively, but the high kurtosis 

indicated potential overfitting or the presence of anomalies. 

 

Forecast Results and Observations 

1. CO (GT): 

 

 

o General trends were smoother for the ARIMA model forecast than the actual 

data, although it does capture these up and down trends, it does not show sharp 

peaks or fluctuations. 

o This mismatch may arise from ARIMA’s limitations in handling sudden 

variability in time series data. 

 

2. NO2 (GT): 
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o The forecast for NO2 showed a consistent downward drift, deviating 

significantly from the actual observed peaks and troughs. This would indicate 

that the ARIMA model struggled to accurately represent the volatile behavior 

of NO2 over time. 

3. RH: 

 

o hese indeed captured very regular seasonal trends in the RH forecasts, whereas 

ones from the data were highly spiky. 

o This could also suggest that the ARIMA model may not have fully captured the 

influence of external factors, such as weather conditions. 

 

 

Strengths and Limitations of ARIMA Models 

1. Strengths: 

o The ARIMA models provided reliable overall trends, especially for CO (GT) 

and RH. 

o Parameter selection via auto_arima was efficient, identifying the best 

configurations to minimize the AIC and ensure statistical adequacy. 

2. Limitations: 

o The univariate nature of ARIMA ignores relationships between variables like 

for example, CO and NO2, limiting its ability to capture interdependencies. 

o Forecasts smoothed out extreme fluctuations, resulting in inaccuracies for 

volatile variables like NO2. 
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While the ARIMA models captured the general trend with understandable results, some 

shortcomings remained concerning intrinsic volatility in the dataset and the interactive nature 

among the variables. Further analysis of a multivariate approach will go higher precisions in 

the forecast and better reflect real-life relationships. 

 

 

Task 4 – Results and Evaluation  

This section provides an analysis of the performance of two different forecast methods, 

namely Vector Autoregression (VAR) and ARIMA-AutoRegressive Integrated Moving 

Average, in their ability to yield efficient forecasts for key air quality indicators such as CO 

(GT), NO2 (GT), and RH. These models were followed up with the assessment of their 

performances with the MAE and RMSE. 

 

 

 

Analysis of Results 

1. CO (GT): 

o The VAR model outperforms ARIMA significantly, with much lower MAE 

(0.4984 vs. 1.6211) and RMSE (0.79 vs. 1.71). This suggests that VAR had 

more ability to catch the short-run dynamics and relationships of variables 

influencing the levels of CO. 

2. NO2 (GT): 

o While similar to CO, the VAR model proved to be more accurate, with much 

lower MAE and RMSE than ARIMA: 16.36 versus 120.59 and 21.0971 versus 

123.1093, respectively. 
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o Large discrepancies in the forecasts of ARIMA could be a reason for not 

considering the strong cause-effect relationships of NO2 with other main 

factors like CO and RH. 

3. RH (Relative Humidity): 

o The VAR outperformed the ARIMA model at an MAE of 3.7517 and RMSE of 

4.6218, against the ARIMA MAE of 35.6634 and RMSE of 37.7545. 

o ARIMA's weaker performance for RH highlights its limited capacity to handle 

the volatility and inter-variable influences present in the dataset. 

 

Graph Analysis: VAR vs. ARIMA Predictions 

The graphs display the actual values (blue line), VAR predictions (orange dashed line), and 

ARIMA predictions (green dashed line): 

 

 

1. CO(GT): While VAR predictions capture the variations better, the actual 

valuesfollow them quite closely. Contrasting with that, ARIMA looks static and 

unable to adapt to the variations. That reflects the limitation of ARIMA when 

modeling variables influenced by dynamic interrelationships. 
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2. NO2(GT): The model, though showing minor deviations, sets the trend 

of NO2 quitewell in the VAR model. ARIMA predictions 

remain constant and do notshow the sudden change seen in the actual NO2 levels. 

 

3. RH: In terms of relative humidity, 

VAR gives better results for the real values, while ARIMA responds poorly to changes

, sticking with a very basic form offorecasting. 

 

 

Visual Comparison of Forecasts 
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The next forecast observations also support the fact that the VAR model strength will be 

enhanced: 

• The VAR forecasts closely align with the observed values, capturing both trends and 

fluctuations in the data. 

• In the other hand, ARIMA yielded an ultra-smoothed forecast which failed to capture 

many pronounced peaks in the actual data. 

 

Interdependencies Matter: 

• The relationships between the variables, such as strong causality present between CO 

and NO2, are exploited by the VAR model to give better forecasting. 

•  

• In contrast, ARIMA failed to capture these interdependencies and, through its 

univariate nature, had higher errors. 

 

Short-Term vs. Long-Term Accuracy: 

• VAR showed a better short-run accuracy, especially on volatile variables like NO2. 

 

• ARIMA forecast showed smooth results, which may be helpful in analyzing the long-

term trend yet not that good for the short-term. 

 

Model Suitability: 

• When the analysis deals with many interrelated time series variables, as many analyses 

of air quality do, VAR would be more appropriate since it models cross-variable 

interactions. Nevertheless, ARIMA could be useful in independent and univariate 

considerations and lacks robustness at that level to represent multivariate settings. 

 

The comparative analysis showed that the VAR model performed consistently better in 

making forecasts of all three air quality parameters than ARIMA. VAR accounted for the 

inter-variable dynamics in all cases with much-reduced MAE and RMSE. The findings 

underpin that, in the cases in which variables may be interrelated, one should make 

consideration of multivariate approaches to forecasts by time series. Future refinements in the 

parameters of VAR or hybrid modelling may further help improve the accuracy in forecasts. 
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Conclusion 

This study focuses on the application of time series analysis and forecasting techniques to air 

quality data, based on three key variables: carbon monoxide (CO) (GT), nitrogen dioxide 

(NO2) (GT), and relative humidity (RH). This encompasses strict data pre-processing, 

stationarity checking, causal analysis, and model implementation-both univariate (ARIMA) 

and multivariate (VAR). Each one of these activities contributed to a deep exploration of the 

dataset and identification of the best modeling approach. 

 

The initial exploration highlighted the interdependencies among the variables, with CO and 

NO2 showing strong bi-directional causal relationships, whereas RH had a relatively weak 

causal link. The stationarity tests indicated that all the variables needed differencing to make 

them stationary, a prerequisite for any time series modeling. This helped in getting proper 

model development and forecasting. 

 

Although ARIMA models perform well in detecting overall trends, the model faced some 

limitations in volatility response and intervariable relationships. As a result, the ARIMA 

predictions had a very smooth trend that led to increased error, in particular for NO2 and RH. 

Conversely, the VAR model made better utilization of the relationship among those variables 

to realize far more accurate forecasts of the concerned factors, as reflected by the small MAE 

and RMSE of all variables from the VAR model. 

 

The comparison undertaken between VAR and ARIMA gave reason for the adoption of 

multivariate approaches when time series are interlinked within a dataset. The strength of 

VAR, capable of modeling cross-variable influences, outperformed ARIMA in both short-run 

accuracy and responsiveness to variation. In fact, the same was evidenced by the visualization 

of the forecast, where VAR predictions were closer to the observed values. 

 

This analysis, therefore, concluded that multivariate approaches were superior, such as using 

VAR to make such interlinked dataset forecasts. But ARIMA is good to go for univariate time 

series but not in cases involving multiple interrelated variables. There are studies that will be 

covered by integrating hybrid models, which combine the strengths of ARIMA and VAR, or 
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using machine learning techniques for further improvement in predictive performance to gain 

more depth understanding of the dynamics of air quality. 
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Source code: 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from statsmodels.tsa.stattools import grangercausalitytests, adfuller, kpss 

from statsmodels.tsa.api import VAR 

from sklearn.metrics import mean_absolute_error, mean_squared_error 

from pmdarima import auto_arima 

 

df = pd.read_csv('/Users/hodanielkhuu/Library/CloudStorage/OneDrive-

HøyskolenKristiania/School/3 år/PGR304 Predictive 

Analytics/Exam/DataSet_4_Exam/AirQualityUCI.csv', sep=';', decimal=',')   

 

# Combine Date and Time columns 

df['Datetime'] = df['Date'] + ' ' + df['Time'] 

 

# Explicitly specify the format of the datetime 

df['Datetime'] = pd.to_datetime(df['Datetime'], format='%d/%m/%Y %H.%M.%S') 

https://www.nrdc.org/stories/air-pollution-everything-you-need-know#effects
https://medium.com/codex/performing-granger-causality-with-python-detailed-examples-3bca3fb1e1d2
https://medium.com/codex/performing-granger-causality-with-python-detailed-examples-3bca3fb1e1d2
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# Set as index 

df.set_index('Datetime', inplace=True) 

 

# Verify the changes 

print(df.index) 

print(df.head()) 

 

plt.style.use('default') 

 

# Plot for CO (GT) 

plt.figure(figsize=(12, 4)) 

plt.plot(data.index, data['CO(GT)'], label='CO (GT)', color='b') 

plt.legend() 

plt.title('Air Quality - CO (GT)') 

plt.xlabel('DateTime') 

plt.ylabel('Value') 

plt.grid(True) 

plt.show() 

 

# Plot for NO2 (GT) 

plt.figure(figsize=(12, 4)) 

plt.plot(data.index, data['NO2(GT)'], label='NO2 (GT)', color='r') 

plt.legend() 

plt.title('Air Quality - NO2 (GT)') 

plt.xlabel('DateTime') 

plt.ylabel('Value') 

plt.grid(True) 

plt.show() 

 

# Plot for Relative Humidity (RH) 

plt.figure(figsize=(12, 4)) 

plt.plot(data.index, data['RH'], label='Relative Humidity', color='g') 

plt.legend() 



Candidate: 14 

plt.title('Air Quality - Relative Humidity (RH)') 

plt.xlabel('DateTime') 

plt.ylabel('Value') 

plt.grid(True) 

plt.show() 

 

 

data = df[['CO(GT)', 'NO2(GT)', 'RH']] 

 

# Handle Missing Values 

print(f"Missing Values Before Cleaning:\n{data.isna().sum()}\n") 

data.replace(-200, np.nan, inplace=True) 

data.dropna(inplace=True) 

print(f"Missing Values After Cleaning:\n{data.isna().sum()}\n") 

data.dropna(inplace=True) 

data.interpolate(method='time', inplace=True)  # Interpolate missing values to preserve 

continuity 

 

print("\nDataset Information:") 

data.info() 

print("\nFirst 5 Rows of Data:") 

print(data.head()) 

 

# Statistical Summary 

print("\nStatistical Summary of Dataset:") 

print(data.describe()) 

 

correlations = data.corr() 

print(correlations) 

 

# Heatmap  

plt.figure(figsize=(10, 6)) 

sns.heatmap(data.corr(), annot=True, cmap='coolwarm', linewidths=0.5) 

plt.title('Correlation Matrix for Air Quality Parameters') 
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plt.show() 

 

 

# ADF - Stationarity Tests 

def check_stationarity(timeseries, title): 

    print(f"\nChecking Stationarity for {title}:") 

    # Augmented Dickey-Fuller test 

    adf_result = adfuller(timeseries) 

    print(f"ADF Test for {title}: p-value = {adf_result[1]}") 

 

# Check stationarity for each time series 

print("\nChecking Stationarity of Individual Series:") 

check_stationarity(data['CO(GT)'], 'CO(GT)') 

check_stationarity(data['NO2(GT)'], 'NO2(GT)') 

check_stationarity(data['RH'], 'RH') 

 

 

 

def granger_causality_summary(data, max_lag=12): 

    summary = [] 

    for target in data.columns: 

        for predictor in data.columns: 

            if target != predictor: 

                test_result = grangercausalitytests(data[[target, predictor]].dropna(), max_lag, 

verbose=False) 

                p_values = [test_result[lag][0]['ssr_ftest'][1] for lag in range(1, max_lag + 1)] 

                # Average p-value across lags 

                avg_p_value = np.mean(p_values) 

                summary.append({ 

                    'Predictor': predictor, 

                    'Target': target, 

                    'Avg P-Value': avg_p_value 

                }) 

    return pd.DataFrame(summary).sort_values(by='Avg P-Value') 
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# Generate and Display Granger Causality Summary 

gc_summary = granger_causality_summary(data, max_lag=12) 

print("\nGranger Causality Summary:") 

print(gc_summary) 

 

 

train = data[:-24] 

test = data[-24:] 

 

# Ensure there are no NaN or infinite values in the training data 

train = train[["CO(GT)", "NO2(GT)", "RH"]].dropna() 

test = test[["CO(GT)", "NO2(GT)", "RH"]].dropna() 

 

print("\nTrain Set Size:", train.shape) 

print("Test Set Size:", test.shape) 

 

  

model = VAR(train) 

order_selection = model.select_order(maxlags=15) 

print("\nSelected Order of VAR Model:") 

print(order_selection.summary()) 

 

# Fit Model Using Selected Order 

var_model = model.fit(order_selection.aic) 

print("\nSummary of Fitted VAR Model:") 

print(var_model.summary()) 

 

 

var_forecast = var_model.forecast(train.values[-var_model.k_ar:], steps=24) 

var_forecast_df = pd.DataFrame(var_forecast, columns=train.columns, index=test.index) 

 

# Define Evaluation Function 

def evaluate_forecast(true_values, forecast_values, label): 
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    mae = mean_absolute_error(true_values, forecast_values) 

    rmse = np.sqrt(mean_squared_error(true_values, forecast_values)) 

    print(f"{label} - MAE: {mae:.2f}, RMSE: {rmse:.2f}") 

 

# Evaluate forecasts for each variable 

evaluate_forecast(test['CO(GT)'], var_forecast_df['CO(GT)'], 'CO(GT)') 

evaluate_forecast(test['NO2(GT)'], var_forecast_df['NO2(GT)'], 'NO2(GT)') 

evaluate_forecast(test['RH'], var_forecast_df['RH'], 'RH') 

 

# Plotting Actual vs Forecast 

plt.figure(figsize=(15, 18)) 

 

# CO(GT) 

plt.subplot(3, 1, 1) 

plt.plot(test.index, test['CO(GT)'], label='Actual CO(GT)', color='blue', marker='o') 

plt.plot(var_forecast_df.index, var_forecast_df['CO(GT)'], label='Forecasted CO(GT)', 

linestyle='--', color='red', marker='x') 

plt.legend() 

plt.title('CO(GT): Actual vs Forecasted') 

plt.xlabel('Datetime') 

plt.ylabel('Values') 

plt.grid() 

 

# NO2(GT) 

plt.subplot(3, 1, 2) 

plt.plot(test.index, test['NO2(GT)'], label='Actual NO2(GT)', color='blue', marker='o') 

plt.plot(var_forecast_df.index, var_forecast_df['NO2(GT)'], label='Forecasted NO2(GT)', 

linestyle='--', color='red', marker='x') 

plt.legend() 

plt.title('NO2(GT): Actual vs Forecasted') 

plt.xlabel('Datetime') 

plt.ylabel('Values') 

plt.grid() 
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# RH 

plt.subplot(3, 1, 3) 

plt.plot(test.index, test['RH'], label='Actual RH', color='blue', marker='o') 

plt.plot(var_forecast_df.index, var_forecast_df['RH'], label='Forecasted RH', linestyle='--', 

color='red', marker='x') 

plt.legend() 

plt.title('RH: Actual vs Forecasted') 

plt.xlabel('Datetime') 

plt.ylabel('Values') 

plt.grid() 

 

plt.tight_layout() 

plt.show() 

 

def plot_residuals(actual, predicted, title): 

    residuals = actual.values - predicted.values 

    plt.figure(figsize=(15, 6)) 

    plt.plot(actual.index, residuals, label=f'Residuals ({title})', color='purple', marker='o') 

    plt.axhline(y=0, color='black', linestyle='--', linewidth=1) 

    plt.title(f'Residual Analysis: {title}') 

    plt.xlabel('Datetime') 

    plt.ylabel('Residuals') 

    plt.legend() 

    plt.grid() 

    plt.show() 

 

# Plot residuals for each variable 

plot_residuals(test['CO(GT)'][-24:], var_forecast_df['CO(GT)'], 'CO(GT)') 

plot_residuals(test['NO2(GT)'][-24:], var_forecast_df['NO2(GT)'], 'NO2(GT)') 

plot_residuals(test['RH'][-24:], var_forecast_df['RH'], 'RH') 

 

 

co_arima = auto_arima(data['CO(GT)'], seasonal=False, trace=True) 

no2_arima = auto_arima(data['NO2(GT)'], seasonal=False, trace=True) 
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rh_arima = auto_arima(data['RH'], seasonal=False, trace=True) 

 

# Forecast for each model (24 steps) 

co_forecast_arima = co_arima.predict(n_periods=24) 

no2_forecast_arima = no2_arima.predict(n_periods=24) 

rh_forecast_arima = rh_arima.predict(n_periods=24) 

 

# ARIMA forecasts for each variable 

arima_forecasts = { 

    'CO(GT)': co_forecast_arima, 

    'NO2(GT)': no2_forecast_arima, 

    'RH': rh_forecast_arima 

} 

 

arima_forecast_df = pd.DataFrame(arima_forecasts, index=test.index) 

 

 

# Print ARIMA Model Summary 

print("\nSummary of ARIMA Models:") 

print(co_arima.summary()) 

print(no2_arima.summary()) 

print(rh_arima.summary()) 

 

plt.figure(figsize=(15, 10)) 

 

# CO(GT) Plot 

plt.subplot(3, 1, 1) 

plt.plot(test.index[-24:], test['CO(GT)'][-24:], label='Actual CO', color='blue') 

plt.plot(arima_forecast_df.index[-24:], co_forecast_arima, label='ARIMA Forecast CO', 

linestyle='--', color='green') 

plt.legend() 

plt.title('CO: Actual vs ARIMA Forecast') 

plt.xlabel('Datetime') 

plt.ylabel('Values') 
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plt.grid() 

 

# NO2(GT) Plot 

plt.subplot(2, 1, 2) 

plt.plot(test.index[-24:], test['NO2(GT)'][-24:], label='Actual NO2', color='blue') 

plt.plot(arima_forecast_df.index[-24:], no2_forecast_arima, label='ARIMA Forecast NO2', 

linestyle='--', color='green') 

plt.legend() 

plt.title('NO2: Actual vs ARIMA Forecast') 

plt.xlabel('Datetime') 

plt.ylabel('Values') 

plt.grid() 

 

# RH Plot 

plt.subplot(4, 1, 2) 

plt.plot(test.index[-24:], test['RH'][-24:], label='Actual RH', color='blue') 

plt.plot(arima_forecast_df.index[-24:], rh_forecast_arima, label='ARIMA Forecast RH', 

linestyle='--', color='green') 

plt.legend() 

plt.title('RH: Actual vs ARIMA Forecast') 

plt.xlabel('Datetime') 

plt.ylabel('Values') 

plt.grid() 

 

plt.tight_layout() 

plt.show() 

 

# Plot for CO(GT) 

plt.figure(figsize=(12, 6)) 

plt.plot(test.index, test["CO(GT)"], label="Actual CO(GT)", color="blue", linewidth=2) 

plt.plot(test.index, var_forecast_df["CO(GT)"], label="VAR CO(GT)", color="orange", 

linestyle="--", linewidth=2) 

plt.plot(test.index, arima_forecasts["CO(GT)"], label="ARIMA CO(GT)", color="green", 

linestyle="dashed", linewidth=2) 
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plt.title("CO(GT): Actual vs VAR vs ARIMA") 

plt.xlabel("Time") 

plt.ylabel("CO(GT)") 

plt.legend() 

plt.grid() 

plt.show() 

 

# Repeat for NO2(GT) 

plt.figure(figsize=(12, 6)) 

plt.plot(test.index, test["NO2(GT)"], label="Actual NO2(GT)", color="blue", linewidth=2) 

plt.plot(test.index, var_forecast_df["NO2(GT)"], label="VAR NO2(GT)", color="orange", 

linestyle="--", linewidth=2) 

plt.plot(test.index, arima_forecasts["NO2(GT)"], label="ARIMA NO2(GT)", color="green", 

linestyle="dashed", linewidth=2) 

plt.title("NO2(GT): Actual vs VAR vs ARIMA") 

plt.xlabel("Time") 

plt.ylabel("NO2(GT)") 

plt.legend() 

plt.grid() 

plt.show() 

 

# Repeat for RH 

plt.figure(figsize=(12, 6)) 

plt.plot(test.index, test["RH"], label="Actual RH", color="blue", linewidth=2) 

plt.plot(test.index, var_forecast_df["RH"], label="VAR RH", color="orange", linestyle="--", 

linewidth=2) 

plt.plot(test.index, arima_forecasts["RH"], label="ARIMA RH", color="green", 

linestyle="dashed", linewidth=2) 

plt.title("RH: Actual vs VAR vs ARIMA") 

plt.xlabel("Time") 

plt.ylabel("Relative Humidity") 

plt.legend() 

plt.grid() 

plt.show() 
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metrics = [] 

 

for column in test.columns: 

    # VAR Metrics 

    var_mae = mean_absolute_error(test[column], var_forecast_df[column]) 

    var_rmse = np.sqrt(mean_squared_error(test[column], var_forecast_df[column])) 

     

    # ARIMA Metrics 

    arima_mae = mean_absolute_error(test[column], arima_forecasts[column]) 

    arima_rmse = np.sqrt(mean_squared_error(test[column], arima_forecasts[column])) 

     

    # Append results to metrics list 

    metrics.append({ 

        "Variable": column, 

        "VAR_MAE": var_mae, 

        "VAR_RMSE": var_rmse, 

        "ARIMA_MAE": arima_mae, 

        "ARIMA_RMSE": arima_rmse 

    }) 

 

# Convert metrics to DataFrame 

metrics_df = pd.DataFrame(metrics) 

 

# Display the results 

print("\nComparison of VAR and ARIMA Accuracy Metrics:") 

print(metrics_df) 

 

 

 

 

 

 

 

 


